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 ? THERMODYNAMICS AND QUANTUM CORRECTIONS
> FROM MOLECULAR DYNAMICS FOR LIQUID WATER
oo
, Peter H. Berens, Donald H. J. Mackay, Gary M. White and Kent R. Wilson k
:. Department of Chemistry
o University of California, San Diego
o La Jolla, CA 92093
Y
o ABSTRACT
, In principle, given the potential energy function, the values of thermo-
o dynamic variables can be computed from statistical mechanics for a system of
1) . mol In practice for the liquid state, however, two barriers must be over-
g mhmmm&apmblem.howtoqmmmeommedmal
.3 thermodynamic values available from molecular dynamics, Monte
o Carlo, perturbation, or integral methods in order to compare with experimental
% quantum reality. A subsequent paper will focus on the second difficuity, the
-y effective computation of free energy and entropy. A simple technique, derived
o ,’:\’;\ from spectral analysis of the atomic velocity time histories, is presented here
Y iy or the quantum correction of classical thermodynamic values. This technique
3 is based.on the approximation that potential anharmonicities mainly affect the
Y “ lower frequencies in the velocity spectrum where the system behaves essentially
- y, while the higher spectral frequencies, where the devistion from clas-
- mechanics is most pronounced, involve sufficiently harmonic atomic
thnlnmanicmmmuﬁomapply The spproach is demon-
nmad mwmionot‘themmdmtvolmhwamtyfot
g water from classical molecular dynamics followed by quantum correction. The
bl pmmhlund to describe the interactions of the system .of water molecules
- N includes intemal vibrational degrees of freedom and thus strong quantum
.2?3 effects. Comparison of the quantum corrected values with experi-
28 mental measurements shows agreement _
' classical thermodynamics (which are also deri: free energy and entropy)
- are shown to be important not only for internal vibrational motion, but also for
o intermolecular hindered rotational and transiational motions in liquid water
2 They are presumably also important for other strongly associated molecules,
: -~gincluding biomolecules, and thus should be included when comparing caiculated
-] Aceession “or ___jand measured thermodynamic quantities. The approach illustrated here allows
h RIS  GRARi the caiculation of thermodynamic quuntum corrections for liquids, solutions,
1 prIc 1B O ‘and large molecules such as polymers (including proteins and nucleic acids)
1 Unanacur-ed 0 with full inclusion of both intra- and intermolecular degrees of freedom.
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. THERMODYNAMICS AND QUANTUM CORRECTIONS

“3 o FROM MOLECULAR DYNAMICS FOR LIQUID WATER

™ Peter H. Berens, Donald H. J. Mackay, Gary M. White and Kent R. Wilson

' Department of Chemistry

& ' University of California, San Diego

’5:2 La Joila, CA 92093

. I. INTRODUCTION

F- In principle from the potential energy as a function of nuclear positions one can compute
b from statistical mechanics the values of the thermodynamic variables. In practice this has been
. ; a difficult task for liquids and larger molecules such as proteins and nucleic acids. Two substan-
= tial barriers need 10 be overcome. The first, which is the subject of this paper, is how to com-
£ pute quantum thermodynamic reslity when only classical mechanics is practically available as a

eomptnationaltool. That quantum mechanics is essential in treating intramolecular vibrations is

A universally acknowiedged, but it has sometimes been less well appreciated that intermolecular
oy . motions in strongly associated liquids like water also show important quantum effects. Quantum
v A corrections should thus be considered for strongly interacting molecules in general, even for
) - molecules approximated as rigid bodies, and for biomolecules. The second barrier, which is the
e subject of a paper to follow, hhowtémkaﬂympuutheuseful.bunmﬁnﬁdyd:ﬂeuu,

. free energy and entropy. .

N The present paper illustrates a simple molecular dynamics technique for quantum correct-
3 ' ‘ing classical thermodynamic quantities, for example those derived from molecular dynamics,

] Monte Carlo, perturbation, or integral methods. This approsch makes use of the velocity spec-
! (often called the velocity sutocorrelation spectrum), which is related to infrared, Raman,
; neutron spectra. For harmonic systems the velocity spectrum is directly linked to
quantum mechenical thermodynamic parameters, as it then represents the
Mmmaaﬁmdmo(fm Two suppositions are
! a harmonic Mwsﬂmﬁn;thethemodymnﬁcqmmmmom )
snharmonicities meinly affect the low frequency motions which are nearly classical, and #)
gh frequency motions, where quantum effects are more important, are nearly harmonic.
these agsumptions the quantum corrections f~r a thermodynamic variable can be
from the integral over frequen: miversal weighting function for that
times the velocity spectrum computed fron . *pectra of atomic velocity time his-

weighting functions approsch zero in the .. . .cquency region where anharmonici-

The
other spprosches, to nearly classical systems, but can equally be used to treat molecular
systems with internal vibrational degrees of freedom where quantum effects are very strong, for
exampie moiecular liquids, solutions, solids, and polymers, including proteins and nucleic acids,
with full inclusion of internal degrees of freedom.

Section II describes the classical calculation of energy, heat capacity, free energy, and
entropy from moleculsr dynamics, followed in Section [II with the theory of our quantum
correction technique. Section IV describes the caiculation and quantum correction of the
energy and heat capacity of liquid water. While quite good sgreement is achieved with experi- .
ment, we emphasize that our main purpose is to illustrate the techniques and not to make the = o

PACS numbers; 03.65.5q. 61.20.4a. 61.25.Em. $2.60.Lf
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most accurate possible thermodynamic calculations. We point out that the choice of boundary
treatment can significantly affect the numerical results. Section V discusses these results and
their meaning.

I1. CLASSICAL THERMODYNAMICS FROM MOLECULAR DYNAMICS

The standard equations! linking the canonical partition function Q and the various ther-
modynamic variables are

- ky 729108 .
E= k78 | @n
- 3E
=232 CE
A=—kTnQ @3
S= k.r%"—‘ﬁ + kplinQ, @9

in which E is the energy, C, the constant volume heat capacity, 4 the Helmholtz free energy,
S the entropy, ks Boitzman's constant, and T the temperature.

A. Energy :

The energy at & given temperature 7 may be computed from molecular dynamics in
several ways. /) Choose initial conditions for a set of different constant energy microcanonical
molecular dynamics runs t0 approximate a canonical ensembie at 7, for exampie by a sequence
of kinetic energy randomizations from a Boltzmann distribution. The classical energy of the

E=<EQ") +vE")>, . @.5)

is then derived as an average, symbolized by <>, over several moleculsr dynamics runs from
the ensembie at tempersturs T in which E, is the kinetic energy and V the potential energy,
letting the positions and momenta of the N atoms be represented by t¥ %, ... ,ry and
pV=p,,....pn, respectively. #) Compute the tempersture for several different runs at
different constant values of the total energy by averaging the instantaneous temperature defined
in terms of the kinetic energy by

<T0> = M & m <[y, 0>, 2.6)
- Jel

where k, is Boitzman's constant, v, is & Cartesian component of the velocity of one of the ¥
stoms, m; is the mass of that atom, snd <> here indicates a time average. Fit an energy
versus temperature curve to the results for several such microcanonical molecular dynamics
runs. ) Adjust the kinetic energies during each molecular dynamics run in order to represent
the system in s heat bath at temperature T as demonstrated by Andersen.? In this paper we use
both spproaches /) and #).

B. Heat capacity

By performing microcanonical molecular dynamics runs at several different energies and
computing the average temperature for each energy, in other words method i#) above, the heat
capacity at constant volume C, can be derived through numerical differentiation of energy £
with respect to the temperature T

In addition, the heat capecity may be calculated in principle from the kinetic energy
Buctustion (or s microcanonical ensemnble. With the velocity of the center of mass set to zero,
the heat capacity is given by3. ¢

a2 o vsne=<1>? |
C. R/[3 N[—ET?—” 2.7)
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in which R is kp times Avogadro's number, the number of atoms is .V, and T is defined as in
Eq. (2.6) above. Statistical accuracy becomes very important as the denominator becomes
smail, which possibly explains why we did not succeed in calculating accurate values using this

C. Free energy and entropy :

The free energy may be computed from molecular dynamics by a technique due to Kirk-
wood!-5 which has been applied in a parallel manner to Monte Carlo calculations,b as demon-
strated by Mezei, Swaminathan and Beveridge’-$ in a classical Monte Carlo calculation of the
free energy for rigid molecule liquid water.

The classical canonical ensemble partition function Q(£) is defined as!
Q@ = (™) [ [ar¥ap™ expl-BHEY p",0)], 2.8)

in which H@V,p",¢) is the classical Hamiltonian of the system, the Kirkwood! 57 ¢ is a
parameter upon which the Hamiltonian depends, and 8 = (ks 7). Eq. (2.3) now gives

A(§) = =8 InQ(§). 2.9
Differentiating Eq. (2.9) with respect t0 § gives
34 (¢) -l 3 InQ(¢)
T -2 T (2.10)
which allows us to write
S
AG) = AE) =g f deﬁ'i'%gl : @.11)
1 .

in which §; is the value of the Kirkwood parameter which gives the real Hamiltonian and ¢, is a
value which distorts the Hamiltonian to give a reference system (for example an ideal gas, a
hard sphere liquid, or a harmonic solid) for which we can more easily compute the free
energy.? Using Eq. (2.9), we have

Q@) L _ QW)
% 00 8 .
BNy [ [ ar oy SERD). explprre” o7 0] i
- 2.1

o
which by the ensembie postulate of Gibbs

-—p< Mﬂa,fﬂ,:L,‘ : 2.13)

where the derivative of the Hamiltonian with respect to £ is averaged over coordinates and
moments from an ensembie with the Hamiltonian containing the parameter . Substituting Eq.
(2.13) into Eq. (2.11) gives :

4
A(g) = A(§) = f‘f<£ﬂ%‘€m>¢ . (2.19)
]

To evaluste Eq. (2.14) by Wﬂu dynsmics, atomic trajectories are computed for the Hamil-
tonisn H(r¥.p.0), LHE_BL) .o 4 eraged over an ensembie of these trajectories at tem-

persture 7, and the result is then integrated between §, and §;.

In this way, the classical (ree energy change between the system with our real Hamil-
tonian H(rV.pV.¢;) and a reference system with Hamiltonian H(rV.pY.£,) can be computed.
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We chose the reference system to be one for which we can compute the classical free energy
more tractably.

The entropy S of the system may then be calculated using
S=(E-A)T. (2.16)

We will illustrate in a subsequent paper the actual molecular dynamics calculation and
quantum correction of the free energy and entropy of liquid water using approaches based on
the Kirkwood technique.

II1. QUANTUM CORRECTIONS FROM CLASSICAL MOLECULAR DYNAMICS

Outside of the trivial correction for vibrational zero point energy which may be calculated
from spectroscopic dsta!® and which is generally introduced as a constant in the potentiai func-
tion, the vast majority of work in quantum corrections to classical thermodynamic computations
stems from s method first introduced by Wigner!! and Kirkwood.!2 13 In this approach the free
energy is expended in powers of 42, and the first term in the quantum correction to be added to
the classical value of the free energy is shown to be proportional to the classicaily averaged sum
of the squares of the forces exerted on the particles in the system. The Wigner-Kirkwood tech-
nique has been modified, extended and tested by many workers.14-22 Others23-32 have examined
various methods to handle nondifferentiable potential functions which apply, for example, to
hard spheres or square wells. mlydﬂendersonhavewﬁnenacomprehensivereviewof

In sddition 10 the quantum corrections considered here there are the effects of the sym-
metry restrictions on quantum states imposed by Fermi-Dirac and Bose-Einstein statistics. In
the temperature range of interest here these effects are negligible.!2. 13.36

A disadvantage of all the previously cited techniques, except the vibrational zero point
energy cocrection, is that they are ordinarily restricted to systems with small quantum effects.
The method we present in this paper may be applied when quantum corrections are large, for
example t0 intramolecular vibrations.

Owicki and Scheraga’? discuss the quantum corrections for liquid water. Using approxi-
to the effects of librational and vibrational frequencies, they caiculate the quantum
from vibrational motion to energy and constant pressure heat capacity.
butions minus the classical values give their quantum corrections. They
the vibrational frequency of water as it enters the liquid phase which
energy. This is necessary because they use rigid molecules. The type of
we use includes both intra- and intermolecular degrees of freedom and
not yet in practice due to potential energy function inaccuracies as is dis-
take into account the frequency changes from gas to liquid.

The quantum correction technique used in the present paper involves caiculating the velo-
city spectrum S(») from molecular dynamics and then integrating S(») over all frequencies
with a weighting function which is the difference between the quantum and classical harmonic
weighting functions for the thermodynamic variable of interest.

i
|
|

]
i
=

i
i
gfég

A. Velocity spectrum
The velocity spectrum S(») of a classical system of N atoms in equilibrium is defined as

S =ixpg & m<Dly, 0> @0
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in which » is frequency, 8 = (kg 7)~! in which kg is Boitzman's constant and 7 is the tempera-
ture, m; is the mass of the atom corresponding to the jth Cartesian velocity component as a
function of time v,(s), and < > indicates an average over the ensemble. The spectral density
operator D (for which windowing and window correction techniques are described eise-
where3%.39 ) is evaluated in terms of probability per unit angular frequency,

2

Dlv,()] = 2m)~'lim 31: l Jat ept=izmv, )] . (3.2)

The velocity spectrum may also be computed from the Fourier transform of the velocity auto-
correlation function. Note that the velocity spectrum can be computed separately for different
subsets of atoms (for example, different elements, different chemical environments of the same
element, or different molecules) and the velocity spectrum S(») can then be computed as a
sum of the effects from these different subsets of atoms. Thus, as we will see, the quantum
corrections also can be partitioned among the different subsets of atoms. Even though once the
dynamics, i.e. the set of velocities (v, (1)}, is determined, the quantum corrections may be com-
puted separately for different subsets of atoms, it should be remembered that normally all
atoms together contribute to determining the dynamics.

nwmbememwowcomwmevuueonmmm{mm. The Fourier

transform of a real function, e.g. v,(1), has an even real part and an odd imaginary part.%’ The
square of the absolute value ol'sud’: a Fourier transform, e.g. Dlv,(r)], is a real even function.
A linesr combination of real even functions, e.g. S(»), is also a real even function. Therefore
S(~») = S(») which allows us to write

{ dvS) = [ dvS()/2. 33
Substituting Eq. (3.2) into Eq. (3.1) and inserting the result into the right side of Eq. (3.3)
gives

- - P 2

_[de(y) =8 i "’,g,”'ﬂ;"ﬁ'zl? I £ dt exp(=i2zve)v ()] > . 3.4
Let

v,(¢)

V() - {oj Rl 3.9
and let the Fourier transform of v/ (¢) be F7(»), i.e.,

F o) = _T‘ xp(=i2uvt) v/ (1) = fd exp(=i2mwv1) v,(1). 3.6

- -r
Substituting Eq. (3.6) into Eq. (3.4) gives |

Zde(v) - pldv’gmlf_!l-}'-lﬁ’ (v)l >. Q.0
Exchanging integration and the r~ee limit gives

{ dvS(v) = pglm, 5_1@.2—',-_}.' a |’ . 3.9
By Parseval’s theorem, %

Jar|gof = fa|of = [a|vof = fafv,o)f (3.9

............

............
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since v;(?) is a real function. Substituting Eq. (3.9) into Eq. (3.8) gives

IM(») -ﬂgm,f_l_l_m-z-l;- l dr (v,(r)]2> (3.10)
- ngf_ag-}; £ d %’L[v{(:)]’> : 31D

Since by classical equipartition of energy!
. H L ( ﬂ 2 - M '
<E>= I}_‘;{‘ lim - !: a =-{v, (z)] T (3.12)
in which <E,> is the average kinetic energy, _
_[ dvSt) = 28(3N/28) = 3N, G.13)

i.e. the integral of the velocity spectrum from zero to infinite frequency is just three times the
number of atoms, which will be true for any potential, harmonic or not. This relation can be
used as a check on the accuracy of computation of S(»), and to interprete S(») in terms of an
equivalent density of normal modes even for anharmonic systems.

The diffusion coefficient has a particularly simple expression in terms of the velocity spec-
trum. The diffusion coefficient D of & particle with position history r(¢) is defined as4!

b=} lim 2 <lr(r) - rO> 3.14)
where < > indicates an ensembie average. Letting the three Cartesian components of r(r) be
x(1), y(¢) and z(r), we have ‘

D= %fli_l_n.il-; <lx(r) = x(O) + [y(r) = y(O 12 + [z(2) - 2(0)]3>. (3.19
For isotropic systems, the equation may be simplified to

b = im 3 <lxtr) - xOF>, (3.16)
or

D= %,l!n“il; <[x(r) = x(=1)]*>, ‘ (3.17)

where x(r) now represents sny one of the three Cartesian components of r(r). If we let
D, [v;(2)] denote the value of the spectral density at zero frequency, then Eq. (3.2) becomes

D,Iv, (0] = @) lim 3-Lx(s) - x(~nP2 (.19)
Combining Eqs. (3.17) and (3.18) we get

B = 2<D,lv,())>. (3.19
if S(») is restricted 0 equivalent particles, then Eq. (3.1) becomes

S() = hﬁmg <Dlv,(N]> = 122 MmB< Div,()]> (3.20)

. Jet :

where M particies are being considered each of mass m. Then

<D,Iv,(N]1> = $(0)/ 120 Mimps (3.21)

and thus the diffusion constant B is related to the zero frequency value of the velocity spec-
trum S(0) by
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D = 5(0)/12Mm8, (3.22)

in which M is the number of equivalent pamcls. m is their mass, and 8 = (kg T)~! in which
kg is Boltzman’s constant and T is the temperature. The most usual application of Eq. (3.22)
is to consider the particles to be moilecules and to compute the diffusion constant from the zero
frequency value of the velocity spectrum of the center of mass of the molecules.

B. Harmonic approximsation

W2 quantum correct the classical thermodynamic variables using a harmonic oscillator
approximation. This correction is based on a division of the dynamics in frequency space. The
low frequency region is viewed as nearly classical but containing the major anharmonic effects,
and the high frequency region is viewed as nearly harmonic and thus can be quantum corrected
exactly within the limits of the harmonic approximation.

Consider a system of N atoms as linked by harmonic potentiais,
1
YY) = Vo + }f," Soa bridn (3.23)

in which A7, and Ar, are displacements from a potential minimum and ¥, is the potential
energy at that minimum. Such a harmonic situation can be approached classically in the limit
of small atomic motions sbout a potential minimum, i.e. at low temperatures, but one should
remember that quantum wave functions sample the potential in a region about the minimum
even at absolute zero, and thus anharmonicity, both explicit and due to coupling by finite dis-
placements, will aiways piay a role in real systems. Nonetheless, we believe that at higher fre-
qmasmmdydswhkhmtheﬂnitewmmmdsﬁwveloawmmmmwmtedu
if it were fully humonic will usuaily sufficiently well represent the thermodynamic quantum
corrections.

lnthelumanichmn anormlmodeamlmdlmustowcwthesystemaasetoﬂlv
harmonic oscillators with g; as a single oscillator pamnon function. The total canonical parti-
tion function Q for the system can then be expressed in terms of the partition functions g; for
the individual modes as

Q= ﬁ| ] (3.29)
. e
o | |
nQ = fl Ing,. (3.25)
j -

If the normal frequencies are continuously distributed we may take the integral
InQ = _[ dvSG)n q(») (.26

where S(») is the density of normal modes with frequency ».

To show that the velocity spectrum of a system of particies linked through harmonic
potentials represents the density of normal modes, the 3N time varying Cartesian position com-
ponents, xy, . . . , X3y, are first represented in terms of normal coordinates. We have$2

Xy = (ﬂlk)-% f[ g 3 (3.27)
]=-

q=- A,:in(u/l + 0/) (3.28)

where ¢, ...,q;v are the normal coordinates, @y, ..., @3y Ore the characteristic normal
mode angular frequencies in which 27y, = w,, A, is the jth normal mode amplitude, 9, is its
phase, and a,, are constants scaled such that
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reduced energy of the harmonic oscillator, 8 = (k3 T)~!, 4 is Planck’s constant and v is the fre-
quency of the oscillator. Substituting Eq. (3.41) into Eq. (3.26), and inserting this result into
Egs. (2.1) through (2.4) gives

EC = Vo+ ky TIde(v) WEW); WEw) =1 ’ (3.42)
CS = k,Ide(v) we o) WS () =1 | (3.43)
| AC = Vo+ ky rj:dv.s'(y) W), WEG) =Inu (3.44)
5€ = k,Ide(v) WEGY, WEG) = 1 - lnul. (3.45)

These classical weighting functions W€ (») are shown in Fig. 1. To allow the zero of energy to
be set arbitrarily, we include V,, the energy of the system treated classically if all oscillations
are stilled. The expressions for energy and heat capacity reduce to the familiar classical resuits

EC = Vo+ 3Nky T (3.46)
CS =3Nky. (3.47)
D. Quantum weighting functions
The quantum mechanical partition function for a single harmonic oscillator is !
—-u/2
Q@) = =£
%0) 1= (3.48)

where the superscript Q indicates that the variable is derived quantum mechanically and again
u 38 Bhv is the reduced energy. Substituting Eq. (3.48) into Eq. (3.26) and inserting this
result into Egs. (2.1) through (2.4) gives

EQw Vy+ ky TIde(v) w2); W) = (; + e,‘i T (3.49)
cf - k.Ide(v) Wy, WG = [u—"_”e—ﬁ (3.50
A% = Vot ky TIde(v) W), W) = [ln‘—:_-f,;'- 3.51)
5%= I:..zde(v) W), wy) = [e, - in(1 - ™). (3.52)

Fig. 1 shows these quantum weighting functions W 2(»).

For a system which closely approximates a set of harmonic oscillators, such as a perfect
crystal at low temperature, -9 the above equations alone can be used to compute the thermo-
dynamic variables.

E. Quantum correction weighting functions

The quantum corrections (indicated by the superscript A ) are obtained by subtracting the
classical representations from the quantum mechanical representations for the given thermo-
dynamic variable.

Wiy) = o) - wE() (3.53)
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FIG. 1. Universal harmonic
weighting functions W(v) for
the thermodynamic functions
of any harmonic system. Dot-
ted lines are classical W<(»)
from Egs. (3.42) to (3.49),
dashed lines are quantum
w9@), from Egs. (3.49) to
(3.52), and solid lines are
quantum correction
Wi = wo90) - WEQ),
from Egs. (3.54) to (3.57). It
is thus the solid line curves
which are used to weight the
velocity spectra S(») to com-
pute the quantum corrections
to the thermodynamic func-
tions. The top panel is for
energy E, the next to the top
panel is for constant volume
heat capacity C,, the next to
the bottom panel is for
A 71 Helmholtz free energy A, and
7 the bottom panel is for entropy
S. The lower horizontal scale
is plotted in reduced energy
u = Bhyin which 8= ks T, ks
being Boltzman's constant and
T the temperature, while A is
Planck’s constant and » the fre-
quency of the oscillator. The
upper horizontal scale is the
wavenumber equivalent to « at
300 K. Note that all the quan-
tum correction weighting func-
tions go to zero at low fre-
quency where anharmonic
effects become important.
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- 2,4
Cd=Cl=Cl =k _{ dSGIWE ), W2 ()= {'(TM-LJ*' - 1] (3.55)
A3 = 40 = AC = g T dvSOI W2 0). Wi0) = Inl=E —iny (3.56)
A A e u/2

8= 50— SCm ky fAVSGIWEG), W) = [ £ == ln(1-e™)
) -

'"
+ lnu — 1]. (.57

The quantum correction weighting functions W3(y) are aiso shown in Fig. 1. Note that follow-
ing Egs. (3.1), (3.2), and (3.54)-(3.57) we can partition if we wish the quantum corrections
among different subsets of atoms, for example different elements, different chemical environ-
ments of the same element, different molecules, or molecules in different environments.

IV. MOLECULAR DYNAMICS RESULTS FOR LIQUID WATER

Water is the most important of all solvents, and the molecular level understanding of its
bulk properties is of considerable intrinsic interest. We have thus chosen it as a test case for

- our techniques. A quantum calculation for a system of molecules large enough to adequately

represent liquid water is at present impractical, and thus thermodynamic quantities are com-
puted by classical mechanics, usually by Monte Carlo or molecular dynamics techniques. Such
classical molecular mechanics calculations on liquid water have been discussed in reviews by
Stillinger,35 Barnes,** Wood,*S and Beveridge et al.*® Goel and Hockney*’ have wriiten a
comprehensive bibliography for earlier molecular dynamics in general. It will be shown for
liquid water that quantum corrections are needed for both inter and intramolecular motions to
match experimental quantum reality. :

A. Liquid water potentials and previcus computer simulations

A major obstacle for any molecular mechanics computer simulation is the development of
an accurate potential surface. Both experimental data and quantum caiculations are valuable to
this end. BemlmdFMu"(BﬂinwﬁhlvedmariﬁdthmpOinlMle
Lennard-Jones potential for water. An empirical potential for water was introduced in 1951 by
Rowtinson®® (ROW), and tested by Barker and Waits.5-52 This is a rigid four point charge
model with 2 Lennard-Jones oxygen-oxygen potential. The analytical form of the Rowlinson
potential has been utilized in several i potentials, namely BNS and ST2. Ben-Naim and
Stillinger introduced the BNS potential®? in 1972, and Rahman and Stillinger54-56 and othersS2
utilized it in several test studies. After finding the potential too tetrahedronally directionalss
and noting an improvement after an energy rescaling’* Stillinger and Rahman introduced the
ST2 potential’? in 1974. ST2 has been used and tested extensively by many workers. 53-67

Shipman and Scheraga$® have developed a seven point charge effactive pair potential (SS)
for water using a variety of experimental data. Both water dimer® and ice-like water cluster”®
studies have been carried out. In an attempt to include intramolecular vibraticas, to allow for
possible molecular dissociation,’ and t0 account for some of the nonadditive interaction!
between waters, Lemberg and Stillinger introduced a central force potential!? (LS) in 1975. In
this scheme both bonded and nonbonded oxygen-hydrogen interactions use the same potential
?Lsdz‘; all hydrogen-hydrogen interactions. It has been both further applied’? and improved?3

An ab initio water potential prepared by fitting analytical functions to quantum mechani-

cally calculated energy versus nuclear position data was developed.by Popkie. Kistenmacher and
Clementi?™ in 1973 at the Hartree-Fock level. Several studies™-%0 have used this potential
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(HF), and it has been found that the neglect of electron correlation effects leads to significant
inaccuracies.”s. 77.78 In response, Matsuoka, Clementi and Yoshimine8! carried out ab initio cal-
culations with configuration interaction to account for correlation effects. The resulting poten-
tial (CI) has been tested by several investigators.63.67.82-87 A specific comparison of the HF and
CI potentials has been carried out by Swaminathan and Beveridge.38 The Cl potential has been
criticized because of lack of agreement with experimental liquid density, 7 its poor reproduction
of the”wond virial coefficient of steam?3 and the high rms error in fitting the original calculs-
tions.

Watts has provided a flexible water dimer potential® (WATTS) in which a largely empiri-
cal intermolecular potential is compiemented by an intramolecular potential derived from vibra-
tliqoml :ge:ltroscopy. The WATTS potential has been studied and criticized by McDonald and

ein. 89

Several more recent water potentials deserve mention. Stillinger and David92 have
developed -2 polarization potential (SD) in order to describe deformable water molecules and
Stillinger? has studied its dynamic properties. The imporance of non pairwise additive effects
for water is also stressed by Bames et al,% and they introduce a polarizable electropole model
(PE) and test it in a water-amino acid system.? Goodfellow continues this study of coopera-
tive effects and the PE potential by showing how the PE model can be efficiently applied. The
present parameterization of the PE model has been criticized recently because the oxygen-
oxygen radial distribution agrees poorly with experiment.46 Nemenoff, Sair, and Scheraga?’
have developed an empirical technique (EPEN/2) for potential function development which has
been revised by Marchese, Mehrotra and Beveridge.? Berendsen et al%? have produced a single
point charge (SPC) potential with Lennard-Jones intéraction between oxygens in order to han-
dle conveniently protein-water systems. Jorgensen has developed a set of transferable inter-
molecular potential functions (TIPS) for application to organic liquids and water.!% Reimers,
Watts, and Kleinl0! propose a revised version (RWK2) of the WATTS potential.

Many molecular dynamic34. 57.59-61.64.72.36.87.91, 102 calculstions have been carried out as
well as Monte Carlo’-8.37. 46, 50-52.62-65, 67, 74,75, 78, 82. 34. 85, 100. 101, 103, 10¢ cqjculations on liquid
water using most of the potentials described above. In addition, Weres and Rice!0% discuss the
calculation of liquid water thermodynamic properties and their quantum corrections using the
BNS potential (with some modifications) and a cell model viewpoint.

Several papers have tested and compared the variety of water-water potentials, often with
disappointing resuits. Morse and Ricel%¢ calculate some of the properties of ice with many of
the above potentials. The results raise serious questions about the ability of ST2, WATTS, and
LS2 to accurately reproduce the properties of ice while CI, with the exception of reproducing
too low densities, fares well. Reimers and Watts!0! make a related comparison extending to all
three phases. WATTS, ROW, and BNS reproduce the second virial coefficient of steam well
but fail in the other two phases. Cl and ST2 do well for the liquid phase but fail with ice and
steam. They conclude that all modeils tested are generally inadequate to handle all three
phases, but that their revised RWK2 potential fares best. .

B. Molecular dynamics

Our molecular dynamics calculations are carried out on a system of 250 water molecules at i
a density of 1.0 g cm~? and a temperaturs of 300 K with cubic periodic boundary conditions ,
using a special molecular mechanics package running on an array processor. !07. 108 Experimen- |
tally, this density corresponds to a pressure of 85 atm with a negligible resulting difference!%? of
0.012 kJ mole~! in total energy compared to a pressure of 1 atm which corresponds to a density
of 0.997 gcm=). Previous molecular dynamics calculstions of thermodynamic quantities for
water have been carried out using an array processor by Rapaport and Scheraga??- 110 who stu-
W died a sample of 343 rigid waters using the Cl potential with long runs and by Swope, Ander-
o sen, Berens, and Wilson!02 who studied the properties of water clusters. The software used
\ previously!07-108 hes been augmented by an intermolecular force and energy calculator for
water as implemented by Swope and Andersen.!!! This calculator utilizes a piecewise fifth order
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FIG. 2. Velocity spectra times the speed of light ¢ normalized for one molecule of H;O at 300
K and 1.0 g cm™?, using the Watts potential with 250 waters and cubic periodic boundary con-
ditions. The lower panel contsins ¢Sy (»v) for the hydrogen atoms per molecule of water,
¢So(v) for the oxygen atoms per molecule of water, the sum, cSy(») + cSo(v) = cSy,0(»), and

the center of mass velocity spectrum cScy (). The upper panel is a blowup of the low fre-
quency region of the lower panel. The lower horizontal scales are in terms of the reduced
energy u = Bhv in which 8 = (kg 7)=! and » is the frequency. The speed of light ¢ is included
s0 that the integral of cS(») in cm vs the upper scale of wavenumbers in cm™' will be dimen-
sionless, giving the total number of equivalent harmonic oscillators. For a purely harmonic sys-
tem the velocity spectrum S(») would give the number of harmonic modes per unit frequency.
Note that the H atoms dominate Sy,o(v) above 300 cm~* and the O atoms below it.
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polynomial fitted to the analytical potential energy functions as a function of the square of the
Ly distance between the two atoms being considered. It thus both allows a general aigorithm to
b evaluate the polynomial previously fitted to arbitrary analytic functions and eliminates the
Cy necessity of a square root operation. .
. The method for applying a switching function as developed by Andersen and Swope

smooths each water-water energy contribution to zero as the corresponding oxygen-oxygen dis-
” tance passes through the switching region, which for our system extended from 0.85 to 0.90
= nm. This technique eliminates the problem of artificially created monopoles (and possibly large
- dipoles) normally encountered by an atom-atom force feathering or truncation method as only
< part of the water molecule passes through the feathering region (and is possibly imaged). This
E antifact is especially pronounced with water uniess the Andersen-Swope technique is used, as
R the partial charges on each atom are relatively large.
3 The semiempirical flexible water molecule potential developed by Watts% is used. The
Y intramolecular potential is a standard Taylor’s series in internal coordinates about the potential
-~ minimum as derived from vibrational spectroscopy. The intermolecular potential is pairwise by
A atoms and fitted to the second virial coeflicient of steam. '
> Equilibration of the initial water system is accomplished by following periods of dynamics
2 - (0.1 - 2.0 picoseconds) with randomizations of velocity according to a Maxwell-Boltzmann dis-
tribution at the desired temperature until the temperature of the system stabilizes. The total
simulstion time involved in equilibration is approximately 60 picoseconds. The time step of
e integration during equilibration is 0.5 femptoseconds while for the data collection a time step of
0.25 femptoseconds is used.
‘ The velocity data is accumulated by selecting out the velocities every 12 time steps over a
e period of S0 000.time steps (12.3 picoseconds total simulation time). A more elegant approach
. would be to use a digital low-pass fiiter before sampling.!12 The energy and heat capacity data

o are the result of a much longer series of seven runs for a total of 380 000 time sieps over 9$
i picoseconds. |

Re)

C. Velocity spectra

&y The velocity spectrs S(») shown in Fig. 2 are calculated by fast Fourier transforms of the
- velocity time histories of various components of the system. We define the following normal-
¥ ized velocity spectra

Syir) = 428 fl mfi<DIvfin)> | @D
] J=

g Sot) = 42 2‘,‘ mP<DIvPD]> “2)

X j -

:Ef Swy0 (») = So(») + Syl») (4.3)
; Scu) = BB & WM< ppypun)> “0
. J=1

where m©, m, snd m"*° represent the masses of an oxygen atom, hydrogen atom, and water
molecule respectively; D is the spectral density operator defined in Eq. (3.2); v2(1), v/¥(¢) and
v£¥(¢), represent the velocity time histories of the jth oxygen atom, hydrogen atom and molec-
center of mass respectively; M is the number of water molecules, where M & N/3; and a
factor of 1/M has been introduced to normalize the velocity spectra to that for one molecule of
water. The contribution to Sy,o(») by both the oxygens and the hydrogens is determined by
computing esach spectrum, So(») and Sy(»), separately. The high frequency vibrational peaks
composed mainly of the oxygen-hydrogen vibrations are easily seen in Fig. 2. The center of
1 , mass velocity spectrum of the system is also computed and its spectrum reflects the highly
damped vibrational modes of whole water molecules.
i
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The area under Sy,o(v) in Fig. 2 equals 9.0, the equivalent number of harmonic oscilla-

tors (including hindered translation and rotation) per molecule of water, as expected from Eq.
(3.13). (The speed of light is introduced to make the integral versus cm™! unitless.) The dou-
bie peak in the range 2600-5000 cm™! which corresponds 10 the symmetric and asymmetric
stretching modes of the water molecule has an area of 1.89. The peak in the range
12002600 cm™! which corresponds to the bending of the HOH bond angle has an area of 1.00.
This substantiates the view of S(») as a density of normal modes and further suggests that the
. close associstion of the water molecules in the liquid phase h s shifted some of the high fre-
quency stretching motion down into the low frequency region. *

In principle a potential with both intra and intermoiecular degrees of freedom like the
WATTS potential we have used couid take into account the frequency changes from gas to
liquid. The actual for the WATTS potential for the gas phase should be close to
the harmonic values!!? of »; = 3832 cm~! (symmetric stretch), »; = 1649 cm™! (bend), and
vy = 3943 cm™! (asymmetric stretch), compared to the computed liquid phase peaks centered at
3680, 1740, and 3760 cm™' s shown in 2. In real water, the infrared and Raman spectra
show the gas phase anharmonic frequencies!!4 to be 3652, 1595, and 3756 cm™! and the liquid
phase!0. 115 shows a bending peak at approximately 1650 cm™! and a broad stretching peak cen-
tered at approximately 3400 cm™! with perhaps a subsidiary pesk at approximately 3200 cm™!
Thus the WATTS vibrational shifts from gas t0 liquid phase qualitatively resembie the real
water shifts with large shifts downward in frequency for the stretching motions and a smaller
shift upward for the bending motion, but the agreement is certainly not quantitative.

From Sc(0) in Fig. 2 and Eq. (3.22) we obtain for the center of mass diffusion
coefficient D of water a valus of 4.08 x 10~m%~! compared to0 the experimental value!16-117 of
2.42 x 10~m?s™! for liquid weter at 300 K. The precision of our reported value is questionable
because we selected out every tweifth velocity rather than all velocities for the fast Fourier
transform due o computer memory limitations, snd a more reliable value could be computed
from the asymptotic siope of the mesn square displacement of the center of mass for a long
molecular dynamics run. It should also be remembered that the finite size of the periodic
boundaries may affect the longest wavelength and lowest frequency motions and in particular
ﬁnmummhmmmmmmumdym-

Berendsen et ol have reported a spectral deasity of the center of mass of rigid molecule

liquid water, using the previously described SPC potential, which is strikingly similar to our
Scx(v). They report a diffusion coefficient of 3.6 x 10~%mis!.

D. Quantum cerrections
' The difference between the classical and quantum mechanical weighting functions W(y)
srises from the difference between the classical and quantum harmonic oscillator partition func-
tions ¢(»). In the classical limit of » — O, or equivalently ¥ = 0, » = 0, or T — oo, this dis-
tinction dissppears,

" Jim %) = Jim €@, 4.9
This implies
Jim WOG) = lim WoG) = lim W6 4.6)
and thus,
W(0) = w2(0) - WE(0) =0 @.7

in all cases, as can be seen in Fig. 1. The divergence of W2(») from W< (») as » increases
results in a preferential weighting of high frequency motions in the calculation of quantum
corrections.
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Table | gives the liquid water quantum corrections computed from the velocity spectrum
Su,o(v) from Egs. (4.1) to (4.3) as shown in Fig. 2 and the quantum correction weighting
functions W (v) as shown in Fig. 1, using Egs. (3.54) to (3.57). The curves of the products of
S(v) and W* for energy, heat capacity, free energy and entropy are shown in Figs. 3 t0 6,
illustrating the coatribution to the quantum corrections as a function of frequency and of atom
type. A separstion is made for the purposes of Table I in frequency space at 1200 cm-!
between the intermolecular and intramolecular motions for liquid water. Note that the inter-
molecular motions, the hindered translation and rotation, contribute substantially to the total
quantum corretions.

TABLE L. Inter- and intramolecular contributions to liquid
water quantum corrections at 300 K, per mole.

Inter Intra Total

(0-1200 cm=")  (1200-5000 cm™")
F3I)) 42 45.0 49.2
Ce /K -11.0 238 348
A&D 22 334 35.6
$2U/%) 6.5 388 45.3

Classically, a harmonic oscillator contributes kp T to the energy regardless of frequency as

‘a result of equipartition of energy. This produces a straight line for the classical weighting

function in the top panel of Fig. 1. Qmmmmdmm.m.mmmmnghnnqnc

hy << kT, this requirement is unimportant and quantum effects are small. In contrast, a
quantum harmonic ocscillstor with Ay >> kp T has an average energy near Av/2. As a result

lim W) = w28 48

Thus the quantum effects are large for a high frequency harmonic oscillator as it contributes
hv/2 10 the energy instead of kg 7. Table I shows a value of 49.2 kJ for the total quantum
correction to energy. Others have accounted for this quantum effect by introducing a constant
into the potential energy function. Using spectroscopic dats, Eisenberg and Kauzmann!0 have
calculated $5.45 kJ as s 2e10 point energy.

butes kp to C, regardiess of frequency. This produces a straight line in the next to the top
panel of Fig. 1. In contrast, the quantum mechanical harmonic ocscillator with Ay >> kT is
the and changes very little in response to changes in temperature. As a

i
;

w2 () = 0. 4.9)

‘Thus, for each harmonic cecillator with Ay >> ks 7. &y must ds subtracted from the classically
caiculsted C,. mmdmmm«mﬂmemmw?mmfw
constant volume hest capacity results from the rapid divergence of WZ (») and W¢ (») as »
increases from zero.

The equation 4 = £ ~ T3 holds in an anslogous manner for the quantum corrections as
a result of the linear form of the quantum correction equations. The energy terrn dominates
for harmonic oscillators and thus the quantum correction for free energy is slways positive.

The reader may be surprised that the quantum correction for entropy is positive. A quan-
tum mechanical harmonic oscillator with Ay >> kT is stuck in the ground state and
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FIG. 3. Energy quantum correction curves for liquid water for H atoms, for O atoms, and their
, sum giving the total H;0. Plotted is the product of the speed of light ¢, the velocity spectrum
1» S(»), snd the energy quantum correction weighting function W 2(») vs the reduced oscillator
energy #3SAy on the bottom axis and the wavenumber equivnfem,at 300 K on the top axis.
The integral of the product S(») W7 (») vs » gives the quantum correction to energy, as shown

i in Eq. (3.54). The Figure also illustrates how the quantum correction pertitions between the O
! atoms snd the H atoms which dominate at all but the lowest frequencies.
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FIG. 5. Heimhoitz free energy quantum correction curves for liquid water for H atoms, for O
atoms, and their sum giving the total H;O quantum correction. Plotted is the product of the
speed of light c, the velocitI spectrum S(»), and the Helmholtz free energy quantum correc-
tion weighting function W ;(») vs the reduced oscillator energy uShv on the bottom axis

and the wavenumber equfvalem at 300 K on the top axis. The integral of the product

.&(n& ;V:(v) vs » gives the quanturn correction to Helmhoitz free energy, as shown in Eq.
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FIG. 6. Entropy quantum correction curves for liquid water for H atoms, for O atoms, and their
sum giving the total H;O quantum correction. Plotted is the product of the speed of light c,
the velocity spectrum S(»), and the entropy quantum correction weighting function W>(») vs
the reduced oscillator energy w3Bhy on the bottom axis and the wavenumber equivalent at
300 K on the top axis. The integral of the product S(») W¢'(v) vs » gives the quantum correc-
tion to entropy, as shown in Eq. (3.57).
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contributes aimost nothing to the entropy. Thus, as seen in Fig. 1,

lim W) =o. (4.10)
In contrast, the classical harmonic oscillator weighting function has the following properties.

lim W) = 0. .11

lim W) = . 4.12)

The first equation indicates that an unconstrained particle has an unlimited number of available
states. The second equation resuits from the difficulty of applying the third law of thermo-
dynamics to the classical representation of entropy for a harmonic oscillator. Because of the
negative sign of the classical weighting function, the quantum correction for entropy is positive.

Figures 3t0 6 show the products of the velocity spectra S(») with the quantum correction
weighting functions W*(») for energy E, constant volume heat capucity C,, Helmholtz free
energy A, and entropy S. Since Sy,o(») can be partitioned into separate contributions from
the hydrogen and oxygen atoms, wealsopumiontheptoducu Si,0 () W*(») and thus com-
pute separately the hydrogen and oxygen atom contributions to the quantum corrections. The
hydrogen atom motions dominate except at the very lowest frequencies which nave little weight
anyway.

E. Energy

Seven water samples with dlﬂ'erent energies are created and equilibrated, and the average
temperature for each sample, calculated over at least ten picoseconds running time, is plotted in
Fig. 7. A straight line is fitted to the points, and the total classical energy E€ corresponding to
300 X is calculated. By averaging over a subset (500 time steps selected over a time period of
1.25 picoseconds) of a complete run at 300 X we also compute the average value of the
intramolecular potential energy V,..; the intermolecular potential energy V.. and the kinetic
energy E, as shown in Table II. Because £€ is calculated from the fitting shown in Fig. 7 while
Vowss Viw ad E. are calculated from the short subset discussed above, there is a
0.1 kJ mole™! discrepancy between the values shown in Table I for £€ and for the sum of its
components “'!"'V wer + E¢. The quantum correction E2 is obtained by integrating the
function S() W (v)sshminE&OSOmdFi;J Addition of the kinetic energy (calcu-
isted from instantaneous veloci 118 ) 1o the total potential energy results in conservation

dmwmmmtmﬂymomdwiththeOZstm;emuonstepsizeused. As sug-
gested by Andersen!!? we graphed the standard deviation of the total energy versus the square
of the time step for several molecular dynamics runs. The resulting nearly linear piot verifie.
the accuracy of our software and hardware as the Verlet integration algorithm gives an error in
total energy in proportion to the square of the integration time step.119 To calculate Vg, We
first remove a constant repmemin; the zero point energy contribution from the original
WATTS intramolecular potential. %
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TABLE II. Energy (kJ moie-!).
. " ]

Ve 5.2
V ieer -42.1
E; 11.2
E€ -25.69
EA 49.2
EWeor o EC 4 B3 23.6
Eo» 21.5%
¢Calculated from Fig. 7

See Tabie IV.

McDonald and Klein® calculate with molecular dynamics an intemal potential energy of
=33 kJ mole™! for the WATTS potentisl for 273 K and 1 gm cm~! and Reimers and Watts!0l
report a Moate Carlo calculation giving an intemal energy of —29.2 kJ mole=! for the Watts
potential at 298 K and 0.997 gm cm™~! Both calculations differ from the present one in that their
water molecules are constrained to be rigid. To determine the effect of this we increased the
force constants of our waters first by a factor of four and then sixteen while decreasing the time
step first by two and then by four. The result is that the intermolecular potential energy
decreases (becomes more negative) with changes on the order of 1 kJ to 2 kJ, indicating that
the introduction of flexible waters incresses (makes less negative) the intermolecular potential
energy over a rigid water caiculation. Reimers and Watts run at 298 K and the 1 atm density of
0.997 gm cm™! compared to our temperature of 300 K and 85 atm density of 1.0 gm cm~!. We
performed a special test run at 0.977.gm cm~! and 298K and calculated an intermolecular
potential energy only umﬁmlg different from the 1.0 gm cm~! value, in line with the
0.012 k) mole™' shift expected!®® for the total potential energy from experimental thermo-
dynamic measurements. We orm a molecule-by-moiecule imaging with force feathering
technique following Andersen!!! rather than potential cut-offs as used by Reimers and Watts or
Ewald sums as used by McDonald and Klein. To expiore the effects of potential or force
smoothing or cutoff, we carried out several additional test runs whose results are summarized
xa?um. The standard deviations are given within parentheses and a time step of 0.25 fs is

or each run.

TABLE IIL. Energies in kJ mole~! (with standard deviations
given in parentheses), as well as bond length and bond angle distortions
for several cutoff and feathering boundary methods.

Type - V inr E° 3w 3w
Toq O
ANDERSEN 5.2 (022 421 (0.26) -25.6 (0.00099) 0.52 -1.0
CUTOFF 1 5.5 (0.32) -58.8 (6.1) 418 (6.4) 0.56 -1.0
CUTOFFIl = 55 (032 -50.4 (0.45) -33.6 (0.029) 0.56 -1.0
AA SMOOTH 27.5 -111.7 1.8 -1.7
1G 4.7 0.2 0.1

Boundary effects are a significant problem for systems like liquid water where the long
rangs Coulombic forces extend well beyond the dimensions of the model. One way to deal
with these nonzero forces near the boundary is to choose a cutoff distance beyond which the
potential energy is set to zero. For an atom-atom central force system, this cutoff of the poten-
tial can also be done atom by atom (CUTOFF I in Table IIl). and the resulting forces necessary
for molecular dynamics calculations are then the derivatives of the potential within the cutoff
distance and zero beyond. with a delta function at the boundarv which being of measure zero in

...........................
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length is never seen by the dynamics calculation. Such energy-force pairs are inconsistent due
to the effective negiect of the delta function force term at the cutoff distance which preveats
conservation of energy in actual molecular dynamics runs as required for microcanonical sys-
tems. The atoms fail 10 feel the force deita function and can drift back and forth over the
cutoff boundary with resulting large potential energy fluctuations. For ordinary Monte Carlo
systems where forces are not needed, this difficulty is avoided. We suspect, however, that the
large fluctuations in the radial distribution function which occur at the cutoff distance introduce
significant perturbations to the system. Table III shows the results of a sample molecular
dynamics calculation (CUTOFF I) using a cutoff of 0.875 nm at the midpoint of th 0.85 to
0.90 nm Andersen-Swope feathering which we used for our actual thermodynamic calc.lations.
Notice that the standard deviation (in parentheses) for the intermolecular potential energy is a
fuil fifty-seven percent the kinetic energy.

By cutting off the entire potential molecule-by-molecule$4 using either the distance
between the two centers of mass or the very similar oxygen-oxygen distance as the functional
variable, the effectively neglected delta function force terms in molecular dynamics calculations
are reduced significantly in magnitude as they now represent truncated dipole-dipole rather than
monopole-monopole interactions. Molecule-by-molecule cutoff is also preferable to atom-by-
atom cutoff for Monte Carlo calculations as the fluctuations in the radial distribution function at
the cutoff distance should be greatly reduced.

One way to conserve energy in molecular dynamics runs while still using the atom-by-
atom cutofl method is to set the atom-atom potential beyond the cutoff distance to its value at
the cutoff distance (CUTOFF [I). The energy-force pair is now consistent and for molecules
like water where the forces are essentially Coulombic at the cutoff distance (and the total
charge on each molecule is zero) the energy contribution for a molecule-molecule interaction
conveniently sums to zero when all the atom-atom interactions are beyond the cutoff distance.
The results for this method are also shown in Table IIl (CUTOFF II). Note the order of mag-
nitude reduction in the standard deviation of the total energy. In both cutoff methods, waters
have a tendency to "straddle” the cutoff distance boundary in such a way as to reduce repulsive
and increase attractive atom-atom interactions. For CUTOFF I, this has a much smaller effect
as the potential energy for any atom-atom interaction changes little across the boundary. For
CUTOFF 1, however, each atom-atom potential energy function is truncated to zero at the
cutoff distance which causes an antificiaily iow average intermolecular potential energy.

Another method which might seem reasonabie to try in order to create a consistent
energy-force system for molecular dynamics calculations is to smooth each atom-atom potential
separately to zero (AA SMOOTH) in some smoothing region and then take the derivative to
obtain the force. Indeed such a technique might be useful for systems where the value of the
potential at the cutoff distance is near zero. For water this not the case, however, and AA
SMOOTH is totally useless in this application. For our test run we smoothed each potential to
zero from 0.85 nm to 0.90 am, and the corresponding force was calculated. The resulting
energy values as shown in Table III differ drastically from the experimental ones due mainly to
the large fluctustions in the radial distributions near the cutoff distance. Large forces (20-30
times larger than for the unsmoothed potential) in the smoothing region cause such fluctuations
and are a result of the steep slope of the potential necessary to smooth it to zero. One might.
view this effect as similar to smoothing the neglected delta function force term of the CUTOFF
I system over 0.05 nm. Standard deviations are not given for AA SMOOTH because the total
energy of the system continued to rise over the course of the run, presumably a consequence of
the large forces involved.

The technique by Andersen and Swope (ANDERSEN) which smooths each entire water-
water potential to zero may be viewed as smoothing the delta function force terms of a
molecule-by-molecule cutoff or equivalently a dipole-dipole interaction over a smail range, 0.05
nm in our case. It gives the best energy conservation and smallest V., and V. fluctuations
as shown in Table III. In addition its waters are put under the least "stress” as measured by
Viwe
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It may be concluded from the data in Table III that there are several advantages to using
the ANDERSEN method. It should also be noted that the choice of method of handling boun-
dary eﬂ'ec:tsl significantly influences energy calcuiations with differences on the order of
10 kJ mole™*.

Table Il also contains information on the intramolecular potential energy, the bond
lengths, and the bond angles for each system. V,,, may be seen as a rough index to the
“stress” each water molecule is experiencing. For an ideal gas (IG), i.e. for the same
intramolecular potential with the intermolecular potential turned off, the intramolecuiar poten-
tial energy at 300K is 4.7kJ mole™!, 0.96 k] mole~! above the (3/2)k,T value of
3.74 kJ mole™! one would expect if no anharmonic or centrifugal distortion effects were found.
In the liquid state each oxygen-hydrogen bond on the average is stretched and each HOH angle
on the average is reduced below the equilibrium value, thus increasing V., above the ideal gas
level, which is itself above the harmonic equipartition value.

For a non-rigid calculation at 295.4 K using the LS potential, Rahman, Stillinger, and
Lemberg?? report Vg + Vime ™ —34.8 kJ mole~!, while we calculate for WATTS at 300 K
Viwe + Viuer = —36.9 kJ mole™!. In their partitioning between V., and V,,,, they assume,
but do not messure, that V,,, is given by the expected undistorted harmonic oscillator values,
an approximation which we see to be incorrect, at least in our case, due to anharmonicity, cen-
trifugal distortion, and intermolecular force induced molecular distortion.

The experimental value to which the calculated intermolecular potential energies should
be compared deserves some discussion as two significantly different numbers are quoted
throughout the literature. One way to obtsin the intermolecular potential energy of liquid water
is to equate it to the difference in energy of the fluid and vapor states. This is calculated by
subtracting PV from the heat of vaporization of water at 300 X. Using this method, Dashevsky
and Sarkisovi®® obtain for the intermolecular potential energy from experimental data
—41.0 k) mole~! at 300K, and —41.4kImole~! at 298 K. As pointed out by several
" workers,37.100.101,120-123 however, the bending and stretching frequencies of -.aser change
upon condensation, and this difference in intramolecular energy must be accousies tor, iz ‘well
as the correction for conversion of free to hindered translation and rotation. Xsimers e ai &!
estimate a correction on the order of 7.5 kJ mole~! which would lead tc an intermolecular
potential energy of —33.9 kJ mole~! for 298 XK. This may account for the variation in experi-
mental intermolecular potential energy quoted in the literature, as some workers use the
corrected value for intermolecular potential energy while others do not. It should also be men-
tioned that the definitions used of “internal energy” and "internal potential energy” are not
always well speiled out or consistent among different authors, making comparisons sometimes
difficuit and confusing.

The equivalent £ experimental value for total energy is the difference in energy
between liquid water at 300 K and ideal noninteracting water vapor at 0 K with no zero point
vibrational energy, measuring energies from the bottom of the potential well for non-interacting
molecules. It may be calculated as follows.

Exo x(lig) = Eqx(vap)
= (Exox(lig) = Eox(ice)) + [Eqx(ice) = Eox(vap)] (4.13)
== [Hyox(lig) = Ho x(ice)] + [Ho x(ice) = Hox(vap)) (4.14)

because £ == F for liquid water and ice. Including the zero point vibrational energy gives the
results shown in Table IV.
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TABLE IV. Experimental total energy (kJ mole~!).

Hyp x(lig) = Hqy g lice) 13.4¢
Hy x(ice) = Hyx(vap) -47.36°
Vibrational zero point energy 55.45°
Eo> 21.5

*N. Dorsey, Properties of Ordinary Water

Substance, (Hafner Publishing Co., New York, 1968)

’D. Eisenberg and W. Kauzman, The Structure and

Properties of Water, (Oxford University Press, New York, 1969)

Our computed £ = 23.6 k] mole~! and experimentally derived £°* = 21.5 kJ mole™!
total energies as shown in Tables [T and IV thus agree quite well, perhaps better than expected
in light of the possible improvements discussed in Section V below.

F. Heat capacity

The energy is fixed in a microcanonical ensemble while the temperature as computed
from Eq. (2.6) fluctuates about an average value. Seven distinct water configurations with
different energies are created, and the average temperature for each sample is calculated over at
least ten picoseconds of running time. The seven points are plotted on the energy-temperature
graph in Fig. 7. A straight line is fitted to the points, and the slope is calculated, giving the
constant volume hest capacity. mmultssecnm‘nblevmowqmtepodmeemem with
experiment once the quantum correction is added. Note that the calculated value would
disagree substantially with experiment if the 11.0J deg~'mole~! intermolecular quantum
correction for hindered rotational and translational motion had been omitted.

TABLE V. Constant volume heat capacity (J deg~'mole~").

v 106.5
ch -348
C™ = C§ + C} 7.7
con 74.5¢

¢D. Eisenberg and W. Kauzman, The Structure and
Properties of Warer, (Oxford University Press, New York, 1969)

V. DISCUSSION AND CONCLUSION

The calculations for liquid water presented here are designed to illustrate the quantum
correction of classical thermodynamic quantities and not to provide the uitimate in accuracy for
those thermodynamic values. Even though the results agree well with experiment,
E™” = 23,6 v§ E% = 21.5 k] mole~!, and C* = 71.7 vs C™ = 74.5 ] deg™! mole™!, it is
clear that these classical calculations could be nmproved. For example, it can be argued that no
potential function yet exists for water which is adequate to represent both the inter and
intramolecular motions or which is even valid in an effective sense for all phases.!01.106 The
WATTS potemial function which we use in this example calculation is no exception, having
been criticized$? on the ground that radial distribution functions calculated from it do not agree
with experiment. It is unllkely, as we've seen, to properly account for the change in vibrational
frequencies!0.37. 120-123 on going from the gas to the liquid phase, as there is no direct coupling
between intermolecular distances and the intramolecular part of the potential. The reader is
referred to the recent paper by Reimers, Watts, and Klein!9 for a comparison among various
existing water potentials and a presentation of a revised Watts potential. The potential we have
used is clearly only an effectived’- 7! molecule-molecule potential, as it omits three (ard higher)
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" molecule effects3s. 76.92:96.124.125 which surely must exist. In addition. one could make a more
accurate calculation by including a correction 6-16.37 for the tails of the potential beyond the
0.85 to 0.90 nm region at which we feathered the potential to zero or one could try other long
range correction techniques such as Ewald sums.!26 It seems clear from the large variations in
energy among different choices of boundary treatment that much more needs to be leamed
about the effects of different boundary treatments on systems with long range potentials and
their convergence to experimental values. Related questions have been raised by Pangali, Rao,
and Berne$S with. respect to Monte Carlo calculations. The methodology of quantum correction
illustrated here would work equally well with any or all of the improvements mentioned above
to the classical part of the calculations.

A substantial amount of calculation is needed to achieve the accuracy illustrated in Fig. 7.
The long simulation time to achieve a stable average can be interpreted in terms of the unusual
"stickiness” of liquid water.62.63 The 95 picoseconds of total molecular simulation time illus-
trated in Fig. 7 required 190 hours of real time on an array processor. 107.108 The array proces-
sor ‘speed is approximately 35 times!®® that achieved in optimized Fortran on a DEC VAX
11/780 with a flosting point accelerator, and judging from previously reported figures,62 5-10
times faster than a rigid water calculation on an IBM 360/91. Our 2000 time steps per hour
when scaled for number of particles and cut-off radius is roughly comparable to the speed
reported by Rapaport and Scheraga®”- 110 for their array processor molecular dynamics calcula-
tion for rigid water, taking into account that they use a predictor-corrector integrator, while we
only use one force evaluation per time step. The total number of atom-atom force evaluations
is 1 x 10" and the number of calculations of the total force vector on an stom (summed over
all its pairwise potential interactions with other atoms) is 1 x 10%. This latter figure might be
roughly compered in computational effort to the total number of configurations tried in a simi-
lar Monte Carlo calculation, i.e. the number of times an atom is moved and a new potential
energy is calculated as a sum over all atomic pairwise interactions with other atoms. Since each
molecular dynamics atomic force evaluation delivers the three Cartesian components of the
atomic force vector in contrast to the scalar Monte Carlo computation of potential energy, it
might be argued that the proper number to compare t0 an equivalent number of Monte Carlo
sonfiguration tries is 3 x 108. One might also compare the 380 000 time steps to an equivalent
number of Monte Cario passes through all variables. It has been argued by Rao, Pangali, and
Berne6? that one Monte Carlo pass for rigid water can be compared in computational effort to
one molecular dynamic time step, but for problems accessible to Monte Carlo solution that
Monte Carlo may be several times more efficient in terms of distance moved per pass versus
per molecular dynamics time step. ,

A very different way to compute dynamics and thermodynamic quantities which may in
time become practical would be a quantum force classical trajectory approach!?’ in which at
each time step in the classical trajectory the forces (for the dynamics) and the energy (for the
thermodynamics) are computed from ab initio quantum mechanics.

It is clear from these results that one can and should take into account quantum correc-
tions in testing molecular potential energy functions against experimental thermodynamic meas-
urements. In particular, the intermoiecular (hindered translational and rotational) motions in
strongly associated liquids can lead to significant errors if the related quantum corrections are
neglected in thermodynamic comparisons with experiment. Consider, for example, that the
intermolecular quantum correction to energy for our system is 38 percent of the kinetic energy
while the intermolecular quantum correction to free energy is 20 percent of the kinetic energy.
The intermolecular quantum correction to heat capacity is 15 percent of the experimental value
while the intermolecular quantum correction for entropy is 10 percent of the experimental
value. 19 Similarly, motions in polymers (which can themselves be affected by solvent interac-
tions) may aiso need thermodynamic quantum correction, and the molecular dynamics method
illustrated here also can be applied in such cases.

An interesting aspect of this quantum correction technique is that after the dynamics
(which in general depend upon all the atoms) are computed. the quantum corrections may be
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calculated atom by atom, and thus the quantum effects on the thermodynamic variables may be
considered separately for different elements, different chemical environments of the same ele-
ment, different types of molecules, or molecules in different environments. An advantage of
the basically classical molecular dynamics approach to thermodynamics presented here is the
ability to visuslize and understand intuitively the classical motions and frequencies responsible
for thermodynamic effects. For example, one can understand in a very pictorial way the domi-
:6mceofthemerquanmmconecﬁonsbythehydrosena«nmmionsasillustmedinl-'ngs. 3-

This technique for quantum correcting classical thermodynamic quantities should be appli-
cable to a wide variety of molecular systems including polymers such as proteins and nucleic
acids, liquids, solutions and solids. For example the molecular dynamics method could be used
to compute and quantum correct the heat capacity of biomolecules in solution, a quantity
known to depend on molecular conformation. Thermodynamic calculations can be made
involving both intermolecular and intermolecular degrees of freedom. In addition, this
approach can be extended to treat quasiequilibrium cases, such as the calculation of thermo-
dynamic quantities as a function of progress along a chemical reaction coordinate or thermo-
dynamic quantities for molecules in special surroundings such as boundary waters near a pro-

R m.
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